112(Sc)

UG-II/Math.-III(H)/Supple/20

2020

MATHEMATICS

[HONOURS]

Paper: III

[SUPPLEMENTARY]

Full Marks: 100

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meaning.

1. Answer any **five** questions:

 $1 \times 5 = 5$

- a) Let \mathbb{R}^3 and $W = \{(x, y, 0) : x, y \in \mathbb{R}\}$. Then describe the coset (2,2,2) + W.
- b) Prove that if G is abelian and $\phi: G \to G'$ is a homomorphism of G onto G', prove that G' is abelian.
- c) If G is a finite group of even order, show that there must be an element $a \neq e$ such that $a = a^{-1}$.
- d) Show that $f(x) = x^{\frac{1}{3}}, x \in \mathbb{R}$, is not differentiable at x = 0.
- e) Prove that $\lim \frac{1}{2018^{n^2}} = 0$.

- f) Give an example of two divergent sequences X and Y such that X + Y is convergent.
- g) Given any $x \in \mathbb{R}$, show that there exists a unique $n \in \mathbb{Z}$ such that n-1 < x < n.
- h) Show that |a+b| = |a| + |b| iff $ab \ge 0$.
- 2. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Prove that if the series $\sum_{n=1}^{\infty} x_n$ converges, then $\lim x_n = 0$.
- b) If $x_n = \sqrt{n}$, show that (x_n) satisfies $\lim_{n \to 1} |x_{n+1} x_n|$, but that it is not a Cauchy sequence.
- c) Determine the limit of the sequence $\left(n^{\frac{1}{n^2}}\right)$.
- d) Let $J_n = \left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_n = \phi$.
- e) Prove that if y > 0, there exists $n \in \mathbb{N}$ such that $2^{\frac{1}{n}} < y$.
- f) Prove that if x and y are real numbers with x < y, then there exists an irrational number z such that x < z < y.
- g) Let V be a vector space and W be a subspace of V. Prove that there exists an onto linear map $T: V \rightarrow V/W$ such that KerT = W.

h) Find by inspection the eigen values and eigen

vectors of
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- i) Give an example of a field of order 9.
- j) If p is a prime number a is prime to p then prove that $a^{p^2-p} \equiv 1 \pmod{p^2}$.
- k) Suppose R is an integral domain in which 20.1 = 0 and 12.1=0. Find characteristic of R.
- l) Prove that the group $(\mathbb{Z}, +)$ has only one non trivial automorphism.
- m) If G and G' are two isomorphic groups then prove that Z(G) and Z(G') are isomorphic.
- 3. Answer any **five** questions: $6 \times 5 = 30$
 - a) i) Let (x_n) be a sequence of positive real numbers such that $L = \lim \frac{x_{n+1}}{x_n}$ exists. Prove that if L < 1, then (x_n) converges to 0.
 - ii) Determine the limit of the sequence $\left(3\sqrt{n^{\frac{1}{2n}}}\right)$. (4+2)
 - b) i) Let $S = \left\{1 \frac{\left(-1\right)^n}{n} : n \in \mathbb{N}\right\}$. Find

infimum and supremum of S.

- ii) Let S be a set of nonnegative real numbers that is bounded above and let $T = \left\{x^2 : x \in \mathbb{R}\right\}. \text{ Prove that if } u = \sup S,$ then $u^2 = \sup T.$ (3 + 3)
- c) i) Let (x_n) be a sequence of real numbers that converges to x and suppose that $x_n > 0$. Then the sequence $\sqrt{x_n}$ of positive square roots converges to \sqrt{x} .
 - ii) Give examples of two divergent sequences whose product converges.

 (4+2)
- d) i) Let (x_n) be a bounded sequence of real numbers and let $x \in \mathbb{R}$ have the property that every convergent subsequence of (x_n) converges to x. Then the sequence (x_n) converges to x.
 - ii) Prove that $\lim_{x\to 0} x \cos\left(\frac{1}{x}\right)$ does not exist but that $\lim_{x\to 0} x \cos\left(\frac{1}{x}\right) = 0$.

 (4+2)
- e) i) Let A be a n×n matrix over the field of real numbers, such that the sum of the term of A along each row is 1. Show that 1 is a characteristic root of A.

[4]

[Turn over]

ii) Show that characteristic roots of the matrix

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

are the fourth roots of unity. (3 + 3)

- f) i) Show that it is impossible to find a homomorphism of \mathbb{Z}_5 onto \mathbb{Z}_4 .
 - ii) If G/Z(G) is cyclic, show that G is abelian. (3+3)
- g) i) Let $a_1, a_2,..., a_n$, are unequal positive real numbers in AP, show that

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots, + \frac{1}{a_n} > \frac{2a_n}{a_1 + a_n}$$

- ii) Define minimal polynomial and prove that it is unique. (3+3)
- h) i) State and prove Bolzano's Intermediate Value Theorem.
 - ii) Let $f:[a,b] \to \mathbb{R}$ be a continuous function such that $f\{x\} > 0$ for each $x \in [a,b]$. Prove that there exists a number $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in [a,b]$. (4+2)
- i) i) If $f: A \to \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if (x_n) is a Cauchy

- sequence in A, then prove that $f(x_n)$ is a Cauchy sequence in \mathbb{R} .
- ii) Show that the function $f(x) = \frac{1}{x}$ is uniformly continuous on the set $[a, \infty]$, where a is a positive constant. (4+2)
- 4. Answer any **three**:

 $15 \times 3 = 45$

- a) i) Let R be a ring in which $x^3 = x$ for every $x \in R$. Prove that R is commutative.
 - ii) Prove that a group of order 9 must be abelian.
 - iii) Let $\{v_i\}_{i=1}^k$ be a set of pairwise orthogonal vectors in an inner product space V. Then prove that

$$\left\| \sum_{i=1}^{k} V_{i} \right\|^{2} = \sum_{i=1}^{k} \left\| V_{i} \right\|^{2}$$

- iv) Find four consequtive integers divisible by 3,4,5,7 respectively. (4+3+4+4)
- b) i) Let T:V→V be a symmetric linear map on a finite dimensional inner product saace V. Prove that there exists an orthonormal basis of V consisting of eigen vectors.
 - ii) Apply (i) to prove that if A is a real symmetric to n×n matrix. Then there exists an orthogonal matrix B such that BAB⁻¹ is a diagonal matrix whose entries are the eigen values of A.

iii) Reduce the following quadratic \mathbb{R}^3 into standard form and determine:

$$f(x,y,z) = 4xz + 4y^2 + 8y + 8 = 0$$
(7+3+5)

- c) i) List all elements of \mathbb{Z}_{40} which have order 10.
 - ii) Let G be an abelian group and p be a prime. Show that the set of all elements whose orders are powers of p is a subgroup of G.
 - iii) Prove that $H = \{A \in Gl(2,\mathbb{R}): |A| \text{ is rational} \}$ is rational \}. Prove or disprove that H is a subgroup of G. What if we replace rational by integer?
 - iv) Find two elements in a rings such that both a and b are zero divisors, $a+b \neq 0$, and a+b is not a zero divisor.

$$(4+4+4+3)$$

[Turn over]

- d) i) Let $s_1 > 0$; and $s_{n+1} = \frac{1}{2} \left(s_n + \frac{16}{s_n} \right)$. Prove that (s_n) converges to 4.
 - ii) Establish the convergence or the divergence of the sequence (y_n) ; where

$$y_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
.

[7]

iii) Find the limit of the following sequence
$$\left(\left(1+\frac{1}{n}\right)^{2n}\right)$$
. $(5+5+5)$

- e) i) A function f is uniformly continuous on the interval (a, b) if and only if it can be defined at the endpoints a and b such that the extended function is continuous on [a, b].
 - ii) Show that the function $f(x) = \frac{1}{1+x^2} \text{ for } x \in \mathbb{R} \text{ is uniformly }$ continuous on \mathbb{R} .
 - iii) Let $f:[0,1] \to \mathbb{R}$ be a continuous function that does not take on any of its values twice and f(0) < f(1). Show that f is strictly increasing on [0,1]. (5+5+5)
- f) i) A monotone sequence of real numbers is convergent if and only if it is bounded.
 - ii) Use monotone convergency theorem to show that the series $\sum_{n \in \mathbb{N}} \frac{1}{n}$ is divergent.
 - iii) Let (z_n) be a sequence of real numbers defined by $z_1 = 1$ and $z_{n+1} = \sqrt{2z_n}$. Determine whether the sequence is converging. If the sequence converges find the limit. (5+5+5)

112(Sc) [8]

112(Sc)